
A
P
P
E
N
D
I
X

A

The Sedici
Microprocessor
System

A.1 Introducing the Sedici Microprocessor

Sedici is a simple 16-bit processor designed for educational use. It is based
on the simulated processor JASP which was used to demonstrate the com-
puter organization and architecture in the book ‘Fundamentals of Computer
Architecture’. The main improvements in Sedici are:

◮ A standard memory map from $0000 to $FFFF;

◮ All immediate operands are 16-bits;

◮ Eight scratch registers, D0 through to D7 (compared to only A and B in
JASP);

◮ An improved and simplified instruction set.

Additionally, all the tools that simulate the Sedici processor, the assembler, the
firmware builder, etc. have all been written from scratch in C#.

A.2 Looking inside the Sedici
Microprocessor

This section covers:

◮ A description of the function of each register;

◮ The micro-instructions understood by the Sedici control unit;

◮ A description of the memory map, including a description of the memory-
mapped peripherals;

1

Understanding computer systems architecture

◮ The interrupt mechanism;

◮ The file formats used by Sedici for both instruction sets and machine code.

A.2.1 Registers

The processor registers are listed in table A.1.

Register Width (bits) Description
PC 16 Program counter - is used to keep track of the memory address

storing the next instruction to be executed
INC 16 Incrementer - is used to add one to the value held in the PC,

something that needs to occur very often in most programs. Using
the incrementer (effectively as a specialist register) is faster than
using the ALU for this particular task, and importantly does not
affect the PSR flags

D0 to D7 16 Set of 8 General Registers - used to store program bit patterns
MAR 16 Memory Address Register - is used as a specialist register to store

the address of the memory location that we need to read from or
write to

MDR 16 Memory Data Register - is used as a specialist register to store
the data that we have just read from memory or need to write to
memory

IR 16 Instruction Register - is the specialist register where we store the
instruction once it has been fetched from memory

ALUx 16 Arithmetic Logic Unit X Register is the first of two specialist
registers where we store bit patterns to be used in ALU operations

ALUy 16 Arithmetic Logic Unit Y Register is the second of two specialist
registers where we store bit patterns to be used in ALU operations

ALUr 16 Arithmetic Logic Unit Result Register is the specialist register
where the result from an ALU operation is stored

USP 16 User Stack Pointer - is the specialist register used to store the
address of the top of the user stack held in memory

SSP 16 Supervisor Stack Pointer - is the specialist register used to store
the address of the top of the supervisor stack held in memory

PSR 16 Processor Status Register - is where we store information about
the state of the processor, including the state of the last ALU
operation

Table A.1 Processor registers

2

The Sedici Microprocessor System

The Instruction Register

The instruction registers has a number of fields:

|XXXXXXXXaaaabbbb|

XXXXXXXX = opcode

aaaa = r0

bbbb = r1

r0 and r1 can be used as a shortcut for the microprogram for an instruction. For
example, a microprogram could use the data movement PC←[IR(r0)] which
would use the contents of r0 to ‘look-up’ the contents of a specific register,
and move the contents of that register into the PC.

The short-cut codes are as follows:

Registers Look-up value Look-up value (hex)

D0-D7 0 to 7 0 to 7

MAR 8 8

MDR 9 9

ALUx 10 A

ALUy 11 B

ALUr 12 C

USP 13 D

SSP 14 E

PC 15 F

A.2.2 Micro-Instructions

The Sedici processor has a micro-programmed control unit, where each ma-
chine code instruction is defined as a sequence of micro-instructions known
as a micro-program. These micro-programs are used by the control unit to
execute individual instructions.

These micro-programs can be grouped together in an instruction set file,
sometimes referred to as a microcode file or micro-instruction file.

All the micro-instructions that are recognized by the processor can be
separated into one of five distinct micro-instruction groups. These are:

◮ Data movement micro-instructions;

◮ ALU micro-instructions;

◮ Test micro-instructions;

3

Understanding computer systems architecture

◮ Interrupt mechanism micro-instructions;

◮ Processor control micro-instructions.

All the micro-instructions within each group are described below.

Data Movement Micro-Instructions

The possible data movements are listed in table A.2. Note that the destination
and source can be the same location - perfectly valid, albeit pointless.

RTL Notes
Destination←[Source] Standard data movement
MDR←[M[MAR]] Performs a memory read operation
M[MAR]←[MDR] Performs a memory write operation
CU←[IR(opcode)] 8-bit transfer of instruction to the CU

Table A.2 Data movement micro-instructions

Where Source and Destination come from:

Registers Look-up value

D0-D7 0 to 7

MAR 8

MDR 9

ALUx 10

ALUy 11

ALUr 12

USP 13

SSP 14

PC 15

PSR Entries below this line cannot

IR be referenced through IR(r0), IR(r1)

INC

Shortcuts

IR(r0)

IR(r1)

Misc

JUMPERS(IntBase)

PSR(IntVec)

4

The Sedici Microprocessor System

This list is in the order of the codes assigned to the registers - the first 16 (0 to
15) can be used as op1 and op2.

ALU Micro-Instructions

The ALU micro-instructions are listed in table A.3.

Code Operation RTL Notes
0000 ADD ALUr=[ALUx]+[ALUy] Perform a 2’s complement ADD operation,

adding the ALUx and ALUy bit patterns to-
gether and storing the result in the ALUr
register

0001 ADC ALUr=[ALUx]+[ALUy]+[PSR(c)] Perform a 2’s complement ADC operation,
adding the ALUx and ALUy and C flag to-
gether and storing the result in the ALUr
register

0010 SUB ALUr=[ALUx]-[ALUy] Perform a 2’s complement SUB operation,
subtracting the ALUy from the ALUx bit
pattern and storing the result in the ALUr
register

0011 SL ALUr=[ALUx]<<1 Perform a logical shift left on the ALUx,
storing the result in the ALUr

0100 SR ALUr=[ALUx]>>1 Perform a logical shift right on the ALUx,
storing the result in the ALUr

0101 AND ALUr=[ALUx]&[ALUy] Perform a logical AND operation on the
ALUx and ALUy bit patterns and storing the
result in the ALUr register

0110 OR ALUr=[ALUx]|[ALUy] Perform a logical OR operation on the ALUx
and ALUy bit patterns and storing the result
in the ALUr register

0111 NOT ALUr=~[ALUx] Perform a logical NOT operation on the
ALUx and storing the result in the ALUr
register

1001 INC ALUr=[ALUx]+1 Add 1 to the ALUx bit pattern, storing the
result in the ALUr

1010 DEC ALUr=[ALUx]-1 Subtract 1 from the ALUx bit pattern, storing
the result in the ALUr

1010 ASR
1010 ASL
1010 ROR
1010 ROL

5

Understanding computer systems architecture

Table A.3 ALU micro-instructions

Whenever an ALU operation is executed, the PSR flags V, N, C and Z are
updated. Table A.4 shows how the flags are updated by each ALU operation -
a key to this table is given in table A.5.

Operation V N Z C
ADD * * * *
ADC * * * *
SUB * * * *
SL 0 * * *
SR 0 * * *
AND 0 * * 0
OR 0 * * 0
NOT 0 * * 0
INC * * * *
DEC * * * *
ASR ? ? ? ?
ASL ? ? ? ?
ROR ? ? ? ?
ROL ? ? ? ?

Table A.4 How ALU operations affect the PSR flags

Flag Meaning
V * means that if 2’s complement overflow occurs then V=1 else V-0

(division overflow in cases of DIV and MOD)
0 means that V=0

N * means N=MSB(ALUr)
Z * means if (ALUr==0) then Z=1 else Z=0
C * means if (carry from MSB of ALUr) then C=1 else C=0

* except with SR this means if (carry from LSB of ALUr) then C=1 else C=0
0 means that C=0

Table A.5 The key to figure A.4

6

The Sedici Microprocessor System

Test Micro-Instructions

The four PSR flags may be tested. If a test evaluates to TRUE, any remaining
micro-instructions in that microprogram are executed. Otherwise the micro-
instructions following the test are ignored.

The valid test micro-instructions are listed in table A.6.

RTL Notes
if(PSR(flag)==1) Flag set
if(PSR(flag)==0) Flag clear

Table A.6 Test micro-instructions

Where flag in set of (V,N, C, Z).

Interrupt Mechanism Micro-Instructions

The valid interrupt mechanism micro-instructions are listed in table A.7.

RTL Notes
PSR(e)=1 Enable interrupts
PSR(e)=0 Disable interrupts
PSR(i)=1 Raise interrupt
PSR(i)=0 Kill interrupt

Table A.7 Interrupt mechanism micro-instructions

Where intflag in set of (I, E).

Processor Control Micro-Instructions

The valid processor control micro-instructions are listed in table A.8.

RTL Notes
HALT Processor halt
NOP No operation

7

Understanding computer systems architecture

Table A.8 Processor control micro-instructions

A.2.3 The Interrupt Mechanism

The interrupt mechanism makes use of an interrupt vector table stored in
memory, and the I and E flags of the PSR.

The Sedici processor can only deal with a single interrupt at any given time -
any further interrupts generated while the first interrupt is being handled will
be ignored. The actual details of the interrupt mechanism are definable within
the instruction set. Note that currently the interrupt mechanism uses the User
Stack Pointer (USP), not the Supervisor Stack Pointer (SSP).

Within the default instruction set the interrupt mechanism is defined as:

PSR(I)=0 interrupt flag = 0

MAR<-[USP] } save PSR

MDR<-[PSR] } on the stack

M[MAR]<-[MDR] }

ALUx<-[USP] } decrement

ALUr=[ALUx]-1 } SP

USP<-[ALUr] }

ALUx<-[PC] }

MDR<-[ALUx] } write PC

MAR<-[USP] } to the stack

M[MAR]<-[MDR] }

ALUx<-[USP] } decrement

ALUr=[ALUx]-1 } SP

USP<-[ALUr] }

PSR(E)=0 interrupt enable flag = 0

ALUy<-[JUMPERS(IntBase)] }

ALUx<-[PSR(IntVec)] } build the vector address

ALUr=[ALUx]+[ALUy] }

MAR<-[ALUr] } obtain the handler address

MDR<-[M[MAR]] }

PC<-[MDR] load address of handler into PC

The position of the vector table is configurable, but it defaults to the locations
$00F0 to $00F7.

8

The Sedici Microprocessor System

A.3 Memory

Sedici has 128Kb of memory, accessed as 65, 536 16-bit words (addresses
$0000 to $FFFF).

An address points to a 16-bit word and all memory accesses are words.

Two registers are associated with memory accesses. The Memory Data Reg-
ister (MDR) contains the data value which is about to be written to memory
or a value which has been read from memory. The Memory Address Register
(MAR) contains the memory address of a read or write operation.

Think of MAR as a pointer to a word of memory. The pointer may be moved
by altering the value held in MAR. Values may be transferred from the MDR to
memory (Write) or from Memory to the MDR (Read).

To write a value into memory you do the following:

RTL Description

MDR<-00FF Place data in MDR

MAR<-0010 Place address in MAR

M[MAR]<-[MDR] Update memory

Note the sequence of operations performed when writing data into memory.
The address and data values are loaded into the MAR and MDR respectively
and a write cycle is performed.

A memory read is as follows:

RTL Description

MAR<-0010 Place address in MAR

MDR<-[M[MAR]] Read memory

MDR now contains [M[0010]]

The memory map is shown in figure A.1. This diagram requires updating.

9

Understanding computer systems architecture

00FF
0100

FFFF

0038
0037

0030

User programs and data

RAM

Interrupt vector table

Reserved

DescriptionAddress

6000
5FFF

Graphics card / RAM

002F

0028

001F
0020
0021
0022
0023
0024
0025
0026
0027

Year
Month
Day

Reserved
Timer

Hour
Minute
Second

System
Clock

Reserved

000F
0010
0011
0012
0013
0014

IDR
ISR
ODR
OSR Memory mapped

I/O Device

0008
0007

0000
ROM

Reserved

Reserved

Figure A.1 The Sedici memory map

When accessing or writing to memory, addresses are not wrapped.

All peripherals have default locations within the memory map, but their
locations are configurable.

10

The Sedici Microprocessor System

A.3.1 Memory Mapped I/O

Handshaking needs to be used in order to perform I/O.

To write a character to the screen, first check that the OSR port is set to 1, if
it’s not go into a loop until it is. Only then write the character to the ODR.

To read a character from the keyboard, keep checking until the ISR is set to 1,
only then should you read the character from the IDR.

Here is a piece of code that shows handshaking for both input and output:

TODO

A.3.2 Current System Time

Additionally, Sedici has a system clock device. The current date and time is
accessible from $00E8 to $00ED. No handshaking is required, simply access
the particular memory location for the required date/time value. You cannot
write to these memory locations, although no errors are raised if you try.

A.4 Firmware explained

A detailed description of each assembler instruction in the standard firmware.

A.4.1 MOVE instructions

Bla bla.

MOVE addr,R

Bla bla.

A.5 Using the Sedici Assembler

A.5.1 Introduction

The Sedici assembler isn’t quite a true assembler, more of a (not so) simple
text processor. It takes an assembler source file and a firmware description file
and attempts to do it’s best to produce a machine code file that can be used

11

Understanding computer systems architecture

by the Sedici microprocessor system. The assembler actually knows nothing
about assembly code, it tries to make a best guess as to a instruction being
used - only the mnemonic is used to figure out what to do with the instruction.

A.5.2 A first example

In this section I’ll include a simple source file and assembler it.

A.5.3 Directives

USE

The format of a USE directive is as follows:

USE library

Each library is pre-processed prior to the assembly proper - and if a library
doesn’t exist then the assembly is halted before it’s begun.

EQU

The format of a EQU directive is as follows:

label EQU data

The label is necessary (and must begin the line, i.e. the first letter of the label
must be in column 1), and data is a 16-bit number. For example,

IDR EQU $E0

DC.B

The format of a DC.B directive is as follows:

{label} DC.B data

Where data is a set of strings (indicated by apostrophes) or 8-bit values, each
separated by a comma. For example:

message DC.B ’Hello’,$0a,$0d,0

12

The Sedici Microprocessor System

Apostrophes and asterisks can also be included in your stings provided that
they are ‘escaped’, i.e. preceded by a
character, like in this example:

message DC.B ’My name is \’Fred\’ and here is an asterisk *’,$0a,$0d,0

DC.W

The format of a DC.W directive is as follows:

{label} DC.W data

Where data is a set of 16-bit values, each separated by a comma. For
example:

stuff DC.W $1234,$00FF

Entries can also be a reference to something in the symbol table. An example
is:

ORG $36 * Interrupt vector 6 is set to

DC.W #timerhandler * the timerhandler routine

DS.W

The format of a DS.W directive is as follows:

{label} DS.W data

Basically, this is a way of defining a storage area in your program. label

can be an optional symbol placed in the symbol table to point to the start of
the storage area. data can be either a 16-bit number or can be a reference
to a symbol in the symbol table (i.e. defined by an EQU somewhere in your
program). Examples are:

limit EQU $3

message DS.W #limit

or

limit2 DS.W ^10

13

Understanding computer systems architecture

FRM

The format of an FRM directive is as follows:

FRM firmwarefile

The firmwarefile is the name of a firmware file - it is used within the assem-
bly process. For most programs you’ll just want to use the standard firmware
and so wouldn’t need this instruction.

ORG

The format of an ORG directive is as follows:

ORG data

The data must be a 16-bit number - it is used to set the origin for the program.

LPC

The format of an LPC directive is as follows:

LPC data

The data must be a 16-bit number - it is used to pass an instruction through
to the processor to set the PC to a specific value - that held in data.

A.5.4 Assembler instructions

The assembler has to deal with all manner of instructions - some that haven’t
even been written yet. That is quite some undertaking.

Currently the assembler program understands the following addressing
modes:

◮ Register - e.g. R

◮ Register Indirect - e.g. (R)

◮ Immediate - e.g. #F123

◮ Direct - e.g. $1234

◮ Indirect - e.g. ($1234)

14

The Sedici Microprocessor System

The assembler can cope with multiple levels of indirection (basically it ignores
brackets), it is up to you, the instruction writer, to ensure it does what it is
supposed to do - the assembler merely (merely? It’s not easy) figures out
which opcode a mnemonic within a program matches.

How to write firmware for use with the assembler

Bla bla.

For example, if creating a new arithmetic or logical instruction - ensure that
the result is in the last register listed in the mnemonic. For example, ADD

(address),#data,R should always end up storing the result of the opera-
tion in R. So something like ADD R0,R1 where the result is stored in R1 is a
no-no. Keep to this simple rule (as the default instruction set does) and your
users won’t come a cropper (or at least on where they expect the result to be
stored).

A.5.5 Libraries

io.lib

The basic I/O library. To be ported from routines found in the old JASP
advancedio.lib.

math.lib

Not written yet.

float.lib

Not written yet.

graphics.lib

Not written yet.

15

Understanding computer systems architecture

A.6 Using the Sedici Compiler

A.6.1 Introduction

It’s not been written yet.

16

Bibliography

17

Understanding computer systems architecture

18

Understanding computer systems architecture

20

